

Web Survey Creator
Introduction to Scripting

2

© Dipolar Pty Limited. All rights reserved.

 3

Table of Contents

INTRODUCTION TO SCRIPTING ... 5

WHAT IS SCRIPTING? ... 6

To Script or not to Script? ... 6

AN INTRODUCTION TO JAVASCRIPT .. 7

JavaScript is the most popular ... 7
JavaScript works Everywhere ... 8
JavaScript can react to Events .. 8

JAVASCRIPT BASICS .. 8

The <script> tag .. 8
JavaScript is Case Sensitive .. 8
JavaScript Code Essentials .. 9

ADDING SCRIPTING IN WSC ... 15

WSC Scripting Objects ... 15
How to Use a Question in Scripting ... 16
How to add Scripting to a Survey ... 16

SCRIPTING #101: DEALING WITH DATA .. 19

WORKING WITH DATA IN SCRIPTING .. 20

Rule #1: Script for each Question Type ... 20
Rule #2: Data Location effects Script syntax .. 21
Getting Data for Questions on the Current Page .. 21
Getting Data for Questions on a Previous Page ... 21

READING AND WRITING DATA – THE BASICS.. 22

Writing Data to a Text Question .. 22
Reading Data from a Text Question .. 24

DATA SCRIPTING FOR OTHER QUESTION TYPES .. 25

Choice Questions .. 26
How do Multi-Select Choice Questions Work? .. 28
Numeric Questions .. 29
Matrix Questions .. 29

SCRIPTING #101: VALIDATION OF RESPONSES ... 31

WHAT DOES VALIDATION DO? ... 32

Validation Example .. 32
Validations Available without Scripting ... 33

VALIDATION USING SCRIPTING .. 34

Why is scripted validation needed? ... 34
How Does Scripted Validation Work? .. 34
Scripted Validation Logic ... 34
What the Respondent Sees... ... 35

SCRIPTED VALIDATION EXAMPLE ... 35

Preparing for our Validation Script .. 36
Writing the Script: Step-by-step ... 37
Putting it all together: The Final Script .. 39

4

SCRIPTING #101: TWEAKING THE INTERFACE ... 41

OVERVIEW OF INTERFACE “TWEAKING” .. 42

CREATING CONTENT USING SCRIPTING ... 42

Using a Content Container .. 42
Modifying Existing Content ... 43

DEALING WITH UI EVENTS ... 45

What Events can be Hooked into? ... 45
How can Events be Used? ... 46

UI EVENT EXAMPLE ... 49

Drop-down List with “Other” .. 49

SCRIPTING #101: ORDERING OF PAGES & CHOICES ... 51

PAGE ORDERING IN THE DESIGNER ... 52

Basic Page Order .. 52
Randomization of Pages ... 52
Another way to randomize - A/B Testing .. 53
Page Ordering through Scripting... 54
Our Example: Ordering Pages based on Gender ... 56
Page Ordering in a Nutshell .. 59

ORDERING CHOICES ... 60

Standard Ordering of Choices .. 60
Setting up for Scripted Choice Ordering ... 60

EXAMPLE: SCRIPTED CHOICE ORDERING ... 61

Choice Questions .. 61
Single Range Matrix ... 65
Dual Range Matrix .. 68

SCRIPTING REFERENCE .. 69

SCRIPTING OBJECTS ... 70

args ... 70

FUNCTION REFERENCE .. 77

ADDITIONAL OBJECTS ... 103

SurveyQuestion ... 103
SurveyChoice .. 105
SurveyChoiceTag.. 105
SurveyRow .. 105
SurveyHierarchicalListItem .. 106
SurveyRowTag .. 106
SurveyQuota ... 106
SurveyDistribution .. 106

Introduction to Scripting 5

Introduction
to Scripting

The most advanced Web Survey Creation tools available today
can provide an amazing amount of functionality through a
simple, non-technical interface.

There are times, however, when very specific “one-off”
functionality is needed in a survey. This is when scripting is
needed.

6 Introduction to Scripting

What is Scripting?

For the purposes of this manual, we will only be considering scripting from the point of view of creating
Web Surveys. All scripting in Web Survey Creator is created in JavaScript.

Scripting is simply a method of describing survey logic, or manipulating the survey
interface, using an english-like “scripting language”.

When you use a script, you “explain” to the software how something needs to be performed in a
powerful language, rather than using a pre-defined interface (which is limited to only allowing you to do
whatever the interface was originally designed for).

To Script or not to Script?

Scripting is great when there is no other way to achieve something. If there is another way, however,
scripting adds complexity that would be good to avoid.

Scripting should only be used for functionality that is not possible through the standard survey design
interface.

The good The bad

Scripting is much more powerful than
using a standard interface

You need to build the logic of the script yourself

Complex problems can be solved through
scripting

You must understand the functions available
and how to use them. You are responsible for
ensuring the script is bug-free

All of the standard capabilities of
JavaScript are available

There is a lot to learn to be able to benefit from
all JavaScript has to offer

Let’s consider a simple example. I have a choice question as follows:

If I want this question to default to the answer “No Opinion”, I can select this answer in script as
follows:

Introduction to Scripting 7

var question = wscScripting.getQuestionByDataPipingCode('HOWSATISFIED'); 

if (question) {

  var choice = wscScripting.getChoiceByValue(question, 3);

  if (choice) {

 var isSelected = wscScripting.selectChoice(question, choice);  } }

While this will work, it’s a pretty complex way to set the value of the question. The easy way to do this is
simply to make the “No Opinion” value a default value in the question:

This is an example of a simple rule when it comes to scripting:

Just because you can do something in scripting doesn’t necessarily mean you should.
Only use scripting to create functionality that is not available

to you in a non-scripted way.

An Introduction to JavaScript

JavaScript is designed to add interactivity to Web pages. It is a lightweight programming language (also
known as a “scripting language”) that is embedded into Web pages.

Web Survey Creator was designed to use JavaScript for scripting for a number of reasons.

JavaScript is the most popular

 JavaScript is the most popular scripting language on the Internet. This means that there are a large
number of people who already know how to use it - if you don’t, chances are you will easily be able to
find someone who does.

This popularity is due in part to how easy it is to use JavaScript, so even if you don’t know how to write
in JavaScript yet, it won’t take long to learn.

8 Introduction to Scripting

JavaScript works Everywhere

JavaScript works in all major browsers - for both PCs and mobile devices, including:

• Internet Explorer

• Firefox

• Chrome

• Safari

• Opera

This is important, because it means the scripts you write for your surveys will work everywhere.

JavaScript can react to Events

When adding a script to a survey, it is important to be able to control when a script is performed. For
example, you may want to run a script as soon as a survey page is loaded.

JavaScript can react to events, so this sort of control is easy. Web Survey Creator allows you to choose
when a script is run, including:

• When a Page is Loaded

• When Survey Quota Data is Loaded

• Testing visibility of Next or Submit buttons

• Before a Survey Page is Validated

• When Next or Submit buttons are pressed

• When Previous buttons are pressed

In addition to this, JavaScript can “hook in” to events like a radio button being pressed, or text being
typed into a text field. This makes it possible to provide a high level of interactivity, as we will see later in
this book.

JavaScript Basics

Before venturing into the world of Web Surveys, it is important to understand the fundamental concepts
when using JavaScript.

The <script> tag

JavaScript is always contained within a <script> tag. Below is an example with a single line of JavaScript.

Web Survey Creator includes the <script> tag automatically whenever you use script, so you will never
need to put this tag in your own scripts.

JavaScript is Case Sensitive

Unlike some scripting languages, and HTML itself, JavaScript is case sensitive.

Introduction to Scripting 9

If you have written a piece of JavaScript and it looks right but is not working, the first thing to check is
that you don’t have the case wrong for any of the functions or variables.

Let’s consider a simple piece of JavaScript that writes “Hello World” to the browser:

If this had been entered as follows, it simply wouldn’t work:

The only difference here is the capitalization of “Write”.

You can see how easy it would be to overlook this error. When using any JavaScript function - including
the specialized functions that have been created for Web Survey Creator, always follow a simple rule...

Always use the correct case for everything in your scripts!

JavaScript Code Essentials

JavaScript code is a sequence of JavaScript statements. They are executed in the order that they are
written. It is best practice to end each statement with a semi-colon.

Inserting Comments

If an explanation is needed, comments can be added to a script by starting a line with //.

If you want to add multiple lines of comments, you can start with /* and end with */.

10 Introduction to Scripting

JavaScript Variables

JavaScript variables are used to hold values or expressions. A variable can have a short name, like x, or a
more descriptive name, like FavoriteColor.

It is important to note that:

• Variable names are case sensitive (y and Y are two different variables)

• Variable names must begin with a letter, the $ character, or the underscore character

• Variables are declared with the var keyword.

After the declaration of a variable they are empty (they have no values yet). You can, however, assign
values to the variables when you declare them:

As we will see later when we start building scripts, variables can be manipulated in various ways. For
example, you can do arithmetic operations with variables:

JavaScript Arithmetic Operators

Operator Description Example Result

+ Addition x=y+2
x=7
y=5

- Subtraction x=y-2
x=3
y=2

* Multiplication x=y*2
x=10
y=5

/ Division x=y/2
x=2.5
y=5

% Modulus (remainder) x=y%2
x=1

y=5

Using the + Operator with Strings

When dealing with strings, the + operator can be used to join two or more strings. For example:

Introduction to Scripting 11

The result of this script is that the variable txt3 will contain the text “The weather looks pretty good
today”.

JavaScript Comparison Operators

Let’s assume we have a variable x=5.

Operator Description Example

== is equal to x==5 is true

=== is exactly equal to (value and type)
x===5 is true x===”5” is
false

!= is not equal x!=8 is true
> is greater than x>8 is false
< is less than x<8 is true
>= is greater than or equal to x>=5 is true
<= is less than or equal to x<=4 is false

Comparison operators can be used in conditional statements to compare values and take action
depending on the result.

We will see this in action when we start writing some scripts.

JavaScript Logical Operators

Let’s assume we have a variable x=6 and y=3.

Operator Description Example

&& and (x < 10 && y > 1) is true
|| or (x==5 || y==5) is false
! not !(x==y) is true

The JavaScript Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a variable based on some condition.

For example:

JavaScript Conditional Statements

Conditional statements are used to do different things in your script when different rules are met.

In JavaScript the following conditional statements can be used:

if statement - use this statement to execute some code only if a specified condition is true

12 Introduction to Scripting

if...else statement - use this statement to execute some code if the condition is true and another code if the
condition is false

if...else if....else statement - use this statement to select one of many blocks of code to be executed

switch statement - use this statement to select one of many blocks of code to be executed

An example of a conditional statement is as follows:

The use of a switch statement can be a very efficient way to run the appropriate piece of code in your script.

This is how it works...

First we have a single expression n (most often a variable) that is evaluated once. The value of the
expression is then compared with the values for each case in the structure. If there is a match, the block
of code associated with that case is executed. Use break to prevent the code from running into the next
case automatically.

Introduction to Scripting 13

JavaScript Loops

Often when you write code, you want the same block of code to run over and over again in a row.
Instead of adding several almost equal lines in a script we can use loops to perform a task like this.

In JavaScript, there are two different kind of loops:

for - loops through a block of code a specified number of times

while - loops through a block of code while a specified condition is true

The format of a for loop is as follows:

Here is an example of a for loop:

A while loop has a simpler structure. The format of a while loop is as follows:

Here is an example of a while loop:

A variation of the while loop is the do...while loop. This will execute the block of code once, and then repeat it
for as long as the specified condition is true.

14 Introduction to Scripting

The break statement will break the loop and continue executing the code that follows after the loop (if any).

The continue statement will break the current loop and continue with the next value.

Introduction to Scripting 15

Adding Scripting in WSC

Web Survey Creator allows scripting to be added like any other survey content. If you know how to add a
question, you know how to add scripting!

Scripting is an extremely powerful feature and is designed to be used in the two highest versions of the
software - the MR Premium and MR Ultimate editions.

WSC Scripting Objects

Scripts written in WSC have access to two specialized objects. These objects allow you access to the
questions that are exposed on the current page and additional help methods that can help you to perform
various tasks.

1. args
2. wscScripting

args

args contains a single item isValid that can be used to set the status of an event. This is particularly
relevant for confirming to the event engine that you wish to continue the current process. For example,
you must set the value to true on Next or Previous Button events or those processes are halted and will
not continue.

Property: isValid
Return Value: boolean - Is the current process Valid
Example: var isOkay = true;

if (isOkay) {
 // All my changes allow me to continue 
 args.isValid = true;
}

wscScripting

The wscScripting object provides access to all the custom methods that have been set up for use in your
scripts. These methods will be discussed in detail throughout this book.

16 Introduction to Scripting

How to Use a Question in Scripting

Scripting in a survey inevitably will need access to the basic elements in any survey - the questions.
Accessing a question from within a script requires that the question is set up correctly.

There is only one thing you need to do to a question to make it ready for scripting - give the question a
Question Access Code.

There are a few simple rules when adding access codes:

1. Each code must be unique to a particular question
2. Codes can only be characters and numbers, with no spaces
3. Codes must be at least 2 characters in length
4. Codes are enforced as upper case

Accessing a question is a simple process once the access code is set. A call to getQuestionByDataPipingCode
returns the question object in the script.

How to add Scripting to a Survey

Adding a Scripting Question in Web Survey Creator is similar to adding any other content in the system.
The steps are as follows:

1. Press the Add Content Here button in the Survey Designer to add new content.  

2. Choose JavaScript Script Question as the type of content you wish to add from the Add
Content Here button menu.

Introduction to Scripting 17

The content to be set consists of four parts:

1. A description for the script (straight text)
2. Whether to show a container for the question. You should show a container when you what

to script something that shows on the survey page (as opposed to just scripting “behind the
scenes” logic)

  

3. A choice for when the script will be executed. We will see in later chapters the reasons for

choosing different execution times.  

4. The content of the script itself. As previously mentioned, this is standard JavaScript without
the <script> tag (or function references) - it is effectively the “guts” of the script we want to use.
WSC will encapsulate it correctly on the page.

That’s it! Once added, a script will be executed by WSC at the time you have chosen.

The hard part is ensuring you know how to write the script. That is the subject of the rest of this book.
Happy scripting!

18 Introduction to Scripting

Scripting #101: Dealing with Data 19

Scripting #101:
Dealing with Data

One of the most common uses of scripting is to perform some
logic based upon responses entered into survey questions. This
requires data to be “read” by a script.

It is also common to modify the data entered in a survey
through scripting. This requires data to be “written” by a script.
This chapter discusses how to “read” and “write” survey data
through scripting.

20 Scripting #101: Dealing with Data

Working with Data in Scripting

Loading and saving survey data with scripting is relatively simple. There are a couple of basic rules you
must understand, however, before diving into scripting.

Rule #1: Script for each Question Type

The type of question determines how loading & saving must be implemented in script.

For example, a text question simply stores a piece of text, therefore the script to load and save values looks
as follows:

The script above is very straightforward, since a text question has a single text value. Let’s consider a
multi-selection choice question, however. The answer to this type of question can be multiple choices.

In order to get the value from one multiple choice question and save it to a new multiple choice question,
we would need to do more work than we had to do for the text question. We would need to loop through
all the possible choices and work out which choices were selected. These choices would then need to be
selected in the new question.

Scripting #101: Dealing with Data 21

As we can see, it’s a bit more complex for the more complex question types. The principles are the same
however - you just have to methodically work through the correct way to deal with the data.

Rule #2: Data Location effects Script syntax

Dealing with question data through scripting has to work within the technical boundaries set by how
JavaScript operates.

So what does this mean exactly?

JavaScript scripting runs on the browser. While technically speaking, JavaScript could
access data from anywhere, speed and security considerations dictate that scripting can

only get to data that is available on the current page.

Getting Data for Questions on the Current Page

If we are restricted to getting data from the current page, questions on the current page should be easy to
get to, right?

Absolutely!

In fact, the previous examples all access data from questions on the current page. And regardless of the
question type, getting the question is always the same:

This is really easy. Unfortunately it’s also relatively useless in real-world use, since you will almost always
want to load data from a question that is not on the current page...

Getting Data for Questions on a Previous Page

If you are wishing to read up the data for a question, more often than not this question will appear on a
prior page of the survey. The data for this question will not be available on the current page, because the
question is not on the current page.

To access data for a question on a previous page, the script needs to explicitly indicate that the data will
need to be loaded. If we look at our previous example, the script would need to change as follows if the
question was on a prior page:

The code for the question takes the format of a data piping code if the question is on a different page.
This tells the system that is has to load the data for this question onto this page because the script is going
to need it.

Apart from the syntax for the code to access the question, everything else works exactly the same in the
script.

22 Scripting #101: Dealing with Data

Reading and Writing Data – the Basics

So far, we have looked at script fragments to explain some basic scripting functionality. Now let’s look in
detail at full scripts for read and write data to and from questions with scripting.

For the purposes of these examples, we will use the simplest question type for scripting - text questions.

Writing Data to a Text Question

Let’s look at all the steps needed to write data to a question in a survey - starting from the beginning.

Creating a Text Question

The creation of questions is covered earlier in this book, but the key steps are:

1. Press the Add Content Here button.

2. Choose a Single Line Text question.

3. Enter a Question Access Code for the question. Note that this code is used in scripting -
without it, this question cannot be accessed in a script.

4. Enter the Question Text.

 

5. Press the Save Content button.

The question will be shown in the designer. The unique access code is displayed prominently above the
question.

Scripting #101: Dealing with Data 23

 

Writing Data to a Text Question

To write data to our text question, we need to add some scripting. Let’s assume that we want to set the
text question to “I don’t know” when the page loads.

The steps to set up this script are as follows:

1. Press the Add Content Here button.

 

2. Choose a Javascript Script Question. 

3. Enter a brief explanation of the script. 

4. We don’t want to create any custom interface on the survey page using the script, so we don’t
need a content container.

24 Scripting #101: Dealing with Data

5. Choose to execute the script when the page is loaded. 

6. Enter the script.

  

7. Press the Save Content button. 

Script Elements

The table below highlights fragments of the script that are important to learn and understand.

We want to... Key script Fragment...

Load the question to use wscScripting.getQuestionByDataPipingCode
Write value to the text
question

wscScripting.setValue

Reading Data from a Text Question

Let’s now consider how we can read data from a text question. For the purposes of our example, we will
have a two-page survey, with each page containing a single text question:

Scripting #101: Dealing with Data 25

We have already created the first question. The creation of the second question is exactly the same, except
we give it a unique code of CARBRAND2.

What we now want to do is fill the second question with whatever the text is in the first question. This
will mean that we have to read from CARBRAND and write to CARBRAND2.

The script to do this looks as follows:

Script Elements

The table below highlights fragments of the script that are important to learn and understand.

We want to... Key script Fragment...

Load a question from
previous page

Must use [@CARBRAND#data#@] syntax

Read the value of a
question

wscScripting.getValue

Data Scripting for Other Question Types

Scripting is all about taking what you already know, and making a couple of variations, or adding a small
piece of additional functionality. This is why it is important to have a strong knowledge of the basics, and
build from there.

We now know how the save data to and get data from a text question. All other questions will be a
variation on this knowledge. Let’s look at the other key question types you will want to access through
scripting.

26 Scripting #101: Dealing with Data

Choice Questions

Choice Questions are a little trickier than text questions. Rather than a flat piece of text, the “data” that
must be saved or loaded in a script is a “choice” (or a number of choices if the question allows multiple
selections). So, this begs the question...

How do we manage choices in scripting?

To answer this question, let’s consider an example.

This is a choice question with a unique code of CARBRANDCHOICE. We already know how to get the
question in script (just like we did with the text questions!) What we now need to understand is how to
set the value of this type of question in script.

Attaching Values to Choices

There is one other thing that should be done when setting a choice question up to make scripting easier -
allocating each choice a numeric value. This can be achieved by choosing to automatically apply values to
the choices entered when the question is first added.

By doing this, our choices in this example question would be as follows:

Value Description

1 BMW
2 Ford
3 Chrysler
4 Mercedes
5 Audi
6 Nissan

Choices with values can be managed directly in script by referring to those values. It is therefore best
practice to do two things when creating any question that uses choices that you wish to manipulate in
scripting:

1. Give each choice a numeric value
2. Make sure each of these values is unique

Scripting #101: Dealing with Data 27

Writing Data to a Choice Question

Let’s assume we want to set our sample question to “Audi”. The script to achieve this would be as
follows:

Script Elements

The table below highlights fragments of the script that are important to learn and understand.

We want to... Key script Fragment...

Choose the choice to set
the question to

wscScripting.selectChoiceByValue

Reading Data from a Choice Question

Reading data for a choice question is simply a matter of looping through each of the choices, and seeing if
they are actually selected.

28 Scripting #101: Dealing with Data

Script Elements

The table below highlights fragments of the script that are important to learn and understand.

We want to... Key script Fragment...

Create a loop to go
through the choices for (i=1; i<=oChoiceQuestion.choices.length; i++)

Test if a choice was
selected wscScripting.isChoiceSelectedByValue

How do Multi-Select Choice Questions Work?

Reading and writing to multi-select choice questions work in a similar way to single select questions,
except that you have to manage the fact that multiple items can be selected.

In single select question, selecting a particular value deselects other values automatically because by
definition there can be only one value. In multi-select questions, you need to manage the de-selection of
values yourself.

In the previous example, if we were dealing with multi-select questions, we would have to modify the
code as follows:

Instead of:

We would need to deal with unselected values too:

Script Elements

The table below highlights a fragment of the script that is important to learn and understand.

We want to... Key script Fragment...

Deselect a choice that was
not chosen

wscScripting.deselectChoiceByValue

Scripting #101: Dealing with Data 29

Numeric Questions

When you are dealing with numeric questions, you can pass either a number or they can be handled in
exactly the same way as text questions. As you will note from the example below, you even put the
numbers to place in the question in quotes (‘), just like text values.

There are a number of question types that are effectively numeric questions, and
therefore behave in the same way as shown above. These include

star rating and slider questions.

Matrix Questions

Matrix Questions are one of the more complex question types, since each matrix row is a question by
itself. We know how to get to a question in a script - using the Unique Access Code. The question is, how do
we get to an individual row?

Getting to a Matrix Row

Each row of a matrix can be thought of as its own choice question. If we could get to a row, we could
manipulate it in a similar way to a standard choice question.

Matrix rows do not have their own Access Codes, so there needs to be another way to uniquely identify a
row. To identify and use a row, the key steps are as follows:

1. When creating rows in a matrix, each row you want to access needs to be given a tag with a value.
For example, we will call the tag “ROW”:

30 Scripting #101: Dealing with Data

2. Get to the row in your script

 

Write to, or read from, a Matrix Row

Below is a code snippet showing how you can confirm if a value has been selected in a grid, and how to
set a value for a row in a grid.

Script Elements

The table below highlights fragments of the script that are important to learn and understand.

We want to... Key script Fragment...

Get the row to read
from/write to

wscScripting.getRowByTagValue

Check if one of a number
of values is selected

wscScripting.isAnyMatrixChoiceSelectedByValue

Check if a single value is
selected

wscScripting.isMatrixChoiceSelectedByValue

Set the value for a matrix
row

wscScripting.selectMatrixChoiceByValue

Scripting #101: Validation of Responses 31

Scripting #101:
Validation of Responses

Web Survey Creator provides all the standard built-in validation
capabilities that you would expect from a high-end MR Survey
Tool. There’s often a “one-off” validation, however, that needs
to be scripted because it is so specific to the survey at hand.

In this chapter we look at how you can set up custom validation
within your surveys using scripting.

32 Scripting #101: Validation of Responses

What does Validation do?

When considering the lifecycle of a typical question in a typical survey, it looks something like this:

This is nice and simple, but doesn’t deal with a key question:

What if the answer entered is invalid?

This is where validation comes in - we want to “validate” that a response is correct before saving it. The
validation process therefore occurs just before we save the response:

Validation Example

One of the simplest examples of validation is Mandatory checking. This involves checking that an answer
has actually been entered.

For example, a survey may ask for the name of the respondent. This could be used to identify who
created a particular response. It is therefore important that the name is actually entered. Placing a
mandatory validation on the name question will ensure that a respondent can not continue until a name is
entered.

In Web Survey Creator, validations are run as soon as a respondent moves off a survey page (by pressing
the Next button or Submit button).

If a validation fails, the survey does not advance, and a warning is provided for the question to explain
why the validation failed.

Scripting #101: Validation of Responses 33

Validations Available without Scripting

Web Survey Creator has a series of standard validations for the various types of questions available in the
software. Checking a box indicating that the validation should be tested, and setting the related details for
the validation can set up these validations.

Validations all feature a validation message that is shown if the validation fails. Web
Survey Creator has standard messages for all validations in more than 10 of the most

common languages. These messages can be changed if required
as part of the validation setup.

The standard validations available for different question types are shown below.

TEXT QUESTIONS

Single & Multi-
line

Mandatory

Format
Email address, text only, numeric only,
URL, phone number, zip code, social
security number

Length Minimum, maximum

CHOICE QUESTIONS

Single Selection Mandatory

Multi Selection
Mandatory

No. of Selections Minimum, maximum

NUMERIC QUESTIONS

Numeric

Mandatory

Format
Integers, decimals, US currency, Euro
currency, integer percentage, decimal
percentage

Range Minimum, maximum

Most other question types simply have mandatory validations.

34 Scripting #101: Validation of Responses

Validation using Scripting

Why is scripted validation needed?

The standard validations are often sufficient to ensure that the data entered into a survey is valid. For
more advanced surveys, however, they do have a number of limitations:

• The “logic” they apply is quite rudimentary

• They don’t allow validations between questions

Scripted validation is thus needed to take validations past these limitations.

How Does Scripted Validation Work?

All validations have two processes to complete:

1. Perform the validation logic
2. If the logic fails:

a. Show a warning message; and
b. Halt the progress of the survey

A scripted validation changes the first step. It replaces the simplified logic that can be created through a
couple of clicks with a much broader, more capable logic that is created by using a script.

Scripted Validation Logic

Scripts can be set up to run at different times. A validation script must be set up to run before the Survey
Page is Validated.

This means that the script is run after the next or submit button is pressed, and before WSC moves to a
new page (or completes the survey).

The contents of the validation script are completely up to you. All WSC cares about is:

1. Whether the validation is passed or failed.
2. If the validation failed, what validation error text should be shown?

If the validation is passed, the script must set:

Scripting #101: Validation of Responses 35

If the validation is failed, the script must set:

Failure to validate will halt the survey on the current page. The script needs to tell WSC what validation
text needs to be shown, and on which question:

We will see how all this works together in the next section of this book.

What the Respondent Sees...

A respondent only sees the result of the second part of the validation process - the warning message, and
the halted survey. Therefore, from the perspective of a survey respondent, a scripted validation will look
exactly the same as a standard validation - it will appear in a box above the question that is being
validated.

Scripted Validation Example

We want to survey people about air travel. This survey relates specifically to the last time they took a
flight domestically in Australia. We are looking to achieve the following functionality in our survey:

Two of the key questions we need to ask are:

1. Which Australian destination did you fly FROM? 
2. Which Australian destination did you fly TO?

We want to make sure that people enter valid data. Specifically, someone can’t depart from and fly to the
same destination.

The two questions look as follows:

36 Scripting #101: Validation of Responses

Preparing for our Validation Script

Before we focus on the content of our script, we need to prepare for it.

Giving questions unique access codes

We will give our questions the access codes:

DEPARTURECITY

ARRIVALCITY

We add them to the questions and they are visible in the designer so we can be sure they have been
added:

Making sure choices have values

The easiest way to access choices through scripting is to refer to each choice by it’s numeric value. We
will therefore make sure that our choices have values.

This is done when the choice are originally added:

Scripting #101: Validation of Responses 37

Writing the Script: Step-by-step

Our validation script uses things we have learned in the previous chapter about loading question data,
together with the validation methodology from the previous section in this chapter. Let’s work through
the script a step at a time.

Choose when the script will run

When we create our script, we must make sure that it runs at the appropriate time. Specifically, it need to
run the script before the Survey Page is Validated.

Get the Questions

Validations always require data to work with. Comparison of an answer to some set of rules clearly
requires the loading of the questions by the script. In our example, we need to load two questions:

Test the Data

The testing of the question data is the key function of this script. We need to work out:

What is the best way to determine if the same choice has been made for both questions?

The wscScripting object allows us to test whether a certain value has been selected:

The easiest way to tell if two choice questions have the same choice selected is to loop through the
choices one at a time. A standard loop would look as follows:

This loop who count from 1 up to the total number of choices for the question.

So, if we put all of the knowledge we have so far together, we could create a script to test the data as
follows:

38 Scripting #101: Validation of Responses

This is looking great - now we need to deal with the validation itself.

Stop the Survey

If the data is invalid, we need to stop on the current page of the survey rather than going to the next page,
or submitting. This is achieved by ensuring that:

This is quite different from most scripts we write. In fact, unless we want to indicate an error such as a
validation failure, or scripts normally end in:

Show the Validation Message

If the survey just stopped in its tracks with no warning, this would be very off-putting to a respondent.
We need to ensure that the script will provide a visual warning for the validation so that the respondent
knows what is going on.

This is achieved by attaching a validation message to one or more questions to indicate what the
validation error is.

Once a validation message has been attached to a question, it will remain attached to it until cleared. It is
therefore important to ensure that any validation message that may have been previously added to a
question is cleared if the question now passes validation.

Scripting #101: Validation of Responses 39

Putting it all together: The Final Script

We now have all the pieces to create the custom validation. Our final validation script would look as
follows:

The interface that will be seen by a respondent when invalid data is entered will look as follows:

40

Scripting #101: Tweaking the Interface 41

Scripting #101:
Tweaking the Interface

JavaScript is a client-side scripting language, which makes it
perfectly placed to control and manipulate what is shown in the
browser.

This chapter looks at some examples of what you can do to the
survey interface through scripting.

42 Scripting #101: Tweaking the Interface

Overview of Interface “Tweaking”

Interface “tweaking” is definitely an advanced topic, particularly when it comes to playing with existing
interface elements in a survey. Compared to the other uses of scripting we have discussed so far, interface
“tweaking” is more complex, less structured, and more directly tied to your level of knowledge of HTML,
CSS and JavaScript.

The scripts demonstrated in this chapter are merely a couple of examples of what is possible.

The most common things you can do to the interface using scripting fall under the following headings:

1. Create new content (e.g. HTML Content on a page)
2. Modifying Existing Content (e.g. modifying the layout of existing questions)
3. Creating interactive interface elements (e.g. reacting to a button click)

We will consider examples of each of these in this chapter.

Creating Content Using Scripting

The simplest form of interface “tweaking” is the adding of custom content to a survey page. All the script
requires in these situations is a container on the page for the script to “hook” on to.

Using a Content Container

In order to use a content container on a page, there are two steps:

1. Tick the “Show Content Container” checkbox on the script settings. 

2. Access the container in the script. Note that the container for the current script is always
accessed with the following code using {QuestionContainer}.

Once we have the container in script, we can do anything we like with it. For example, we could place
some simple HTML in it...

Scripting #101: Tweaking the Interface 43

This script will result in the following content being shown on the page:

Modifying Existing Content

For the purposes of this discussion, let’s look at a simple example of modifying existing content. For this
example, we will start with the following question:

Modifying Question Layout

Questions shown in Web Survey Creator provide a number of layout options, including how wide to
make the question, and whether to show values across the page. In this case we want to do something a
little different - we want to center the Yes and No options in the middle of the page.

The choices in this question are in a table, so what we need to do in our script is “hook in” to that table
and modify it so that it will be centered.

We have given the question a unique code of YESNO. The script (which will be run on page load) needed
to get the table for this question, and make it centered, is as follows:

44 Scripting #101: Tweaking the Interface

By using this script, we have changed the layout of the question so that it now looks as follows:

Hiding the Previous Button

Web Survey Creator gives you the option of hiding or showing previous buttons on your survey pages.
This is a global setting, though. What if I want to show previous buttons on all but one page?

Fortunately, all aspects of the interface are accessible to the script. Let’s write a script that hides the
previous button on a single page.

Scripting #101: Tweaking the Interface 45

Once we understand how to get access to the previous button in script, this becomes a very simple script
to write:

The page now looks as follows (no previous button is shown):

Dealing with UI Events

What Events can be Hooked into?

There are a number of events that can be hooked into through scripting. A list of the key events for input
devices are shown below.

46 Scripting #101: Tweaking the Interface

Device Event Details

Mouse click
Fires when the pointing device button is clicked over an
element. A click is defined as a mousedown and mouseup
over the same screen location.

 dblclick
Fires when the pointing device button is double clicked
over an element

 mousedown
Fires when the pointing device button is pressed over an
element

 mouseup
Fires when the pointing device button is released over an
element

 mouseover Fires when the pointing device is moved onto an element

 mousemove
Fires when the pointing device is moved while it is over an
element

 mouseout
Fires when the pointing device is moved away from an
element

Keyboard keydown
Fires before keypress, when a key on the keyboard is
pressed.

 keypress
Fires after keydown, when a key on the keyboard is
pressed.

 keyup Fires when a key on the keyboard is released

There are other events that relate to changes in the content of the survey page as follows:

Event Details

select
Fires when a user selects some text in a text field, including input and
textarea

change
Fires when a control loses the input focus and its value has been modified
since gaining focus

focus
Fires when an element receives focus either via the pointing device or by tab
navigation

blur
Fires when an element loses focus either via the pointing device or by
tabbing navigation

How can Events be Used?

To use events, we need to do three things:

1. We need to have an HTML interface element to attach the event to - for example, a text field to
check for changes

2. We need to indicate which Event (select, change, focus etc.) we want to listen out for
3. We need to script what needs to happen when the event is fired

Getting an HTML Interface Element

The act of “getting” an interface element differs depending upon what type of question you are scripting
for. For simple questions that have only one input control - like text, drop-down and numeric question,
you can get to the HTML Interface Element relatively easily.

Getting a Simple Interface Element

Let’s assume we have a drop-down list question with a unique code of DEPARTMENT.

Scripting #101: Tweaking the Interface 47

In the script below, we are loading the HTML Element for this question.

Getting Question Choice Interface Elements

Attaching an event script to a choice question can be very useful. The trick, however, is to deal with the
fact that a choice question is has multiple interface elements - each of the choices. Let’s assume we have a
drop-down list question with a unique code of DEPARTMENTCHOICE.

In the script below, we are loading the HTML Elements for each of the choices in this question.

48 Scripting #101: Tweaking the Interface

Note that access to choices is zero-based. Therefore, to access the first choice, we actually get:

Complex Interface Elements

Getting an interface element to attach an event to can be “tricky” if you are dealing with more complex
question types. Let’s assume we have a constant sum question with a unique code of
DEPARTMENTSUM.

A Constant Sum question is effectively a matrix with one column (“hours” in our example), and a number
of rows. If we wanted to attach an event to the “other” numeric element, we’d need to first get to the
row. The easiest way to get a row is to search for a particular row tag and value:

Attaching an Event

Once we have an HTML element, attaching an event is quite trivial. The appropriate event is “bound” to
the HTML element, and a function is run whenever that event occurs.

Scripting #101: Tweaking the Interface 49

UI Event Example

Let’s consider a complete example for one of the question types we have discussed earlier in this section.

Drop-down List with “Other”

Choice questions that are shown as radio button or check boxes include a text box for other in the
question. Drop-down lists don’t have this capability. We can add this using scripting, however. All we
need is an “Other” text question that is hidden when Other is selected.

Before we set up our script, the questions would look as follows:

We only want the “Other Specify” question to show if “other” is selected - this is what the script needs to
do for us. Our two questions have the following unique codes:

DEPARTMENT

OTHERDEPARTMENT

50 Scripting #101: Tweaking the Interface

Scripting Reference 51

Scripting #101:
Ordering of Pages & Choices

All surveys follow a particular “flow”. At it’s simplest, this is just
going from one page to the next, and one choice to the next, in
the order a survey was created.

Sometimes, however, survey flow needs to be managed in a very
specific way that varies from respondent to respondent. This is
when scripting needs to be used.

52 Scripting Reference

Page Ordering in the Designer

Before considering how page ordering may be managed through scripting, let’s first consider how page
ordering can be achieved without scripting.

Basic Page Order

Basic page ordering is determined by the order in which they have been added to a survey in the content
manager.

When new pages are added to a survey, they can be added before or after an existing page by pressing the
appropriate button at the top or bottom of the existing page.

This is of course the way page ordering works, even on the most basic survey systems.

Randomization of Pages

If everyone sees pages in the same order, there can be some unforeseen effects on responses including:

1. Better quality responses for pages earlier in long surveys - later pages suffer from respondent
fatigue

2. Responses later in a survey being affected by questions seen by the respondent earlier in a survey
- they make react differently because of what they have previously seen

So, if ordering can change resulting data, how can we minimize these problems?

The only effective way to minimize how page ordering affects responses is to spread the possible ordering
bias evenly. Specifically - page order needs to be randomized.

Scripting Reference 53

To use standard page randomization in Web Survey Creator, you need to:

1. Edit the first page you want to randomize 

2. Check the randomization check box 

3. If you want to group pages together in the random order, enter an optional Block Code 

4. Save the page
5. Repeat for each subsequent page you wish to randomize.

Another way to randomize - A/B Testing

Users of A/B testing will distribute multiple samples of a test to see which single variable is most
effective in increasing a response rate or other desired outcome. The test, in order to be effective, must
reach an audience of a sufficient size that there is a reasonable chance of detecting a meaningful
difference between the control and other tactics.

Web surveys are a great candidate to use A/B testing, since gaining access to a large audience is relatively
easy. A simple example of an A/B test is shown below.

What we want is 50% of respondents to go to the page Option A, and 50% to go to the page Option B.
Achieving this result is another example of randomization.

As soon as a respondent begins a response in Web Survey Creator, they are allocated a random number.
This number can be used for various things - one of which is A/B testing. Setting up an A/B test is
actually done through flow control. The true structure of a survey that has the A/B test above would be:

54 Scripting Reference

The create our A/B test, we want to hide the Option A page 50% of the time, and hide the Option B
page 50% of the time.

Hiding the option A page would require the following flow:

We use the A/B testing Random Number for the Respondent (which is always a number between 1 and
100) to do the flow. We want to hide the Option A page if the number is less than 51 (i.e. the number is
between 1 and 50).

The hiding of the option B page would be the opposite test - hide the page when the A/B testing
Random Number is greater than 50 (i.e. the number is between 51 and 100).

Of course, this methodology wouldn’t just apply to a two page test - you could have up to 100 options
that are randomly chosen between, since the AB testing Random Number is equal to 1 of a possible 100
values.

Page Ordering through Scripting

Randomization is great for spreading the effects of bias due to page order. It does have one limitation
though, that may cause issues in circumstances...

Randomization cannot be predicted - the order of pages a particular respondent will see is determined at
the time they enter their response.

This is great in most circumstances, but what happens if I want to manipulate the order in a known way?
To achieve this, we would need to modify the page order through scripting.

Let’s consider an example...

Scripting Reference 55

What is needed for Page Order Scripting?

If you want to manage page order through scripting, there are a couple of things that need to be set up
correctly as follows:

1. Name your pages so they can be referred to by name in the script. In our example, we will edit
the page names and make them:

a. Gender
b. Advert A
c. Advert B
d. Next Page

2. Make at least one page in the survey randomized so the system knows to include data in

pages to allow script to access page order. You will be able to move any pages in a survey, as long
as at least one is randomized.

3. (Optionally) place individual randomization block codes on pages if you want to access
them by block code (rather than page name).

4. Add the reordering script to a page that comes before the pages to be reordered (it will be run
when the next button is pressed, and pages will be reordered before the survey moves forward).

We want to create a survey that includes two advertisements - each of their own page. The basic
flow of the survey will be as follows:

Our client wants us to show Advert A first for all men and Advert B first for all women. The order
of the pages is therefore determined by the answer to a particular question, rather than being
completely random.

56 Scripting Reference

Our Example: Ordering Pages based on Gender

In our previous example, we want to set up our page ordering so that men see the pages in this order:

and women see pages in this order:

In order to achieve this, we do the following setup in our survey:

1. Name the pages of our survey “Gender”, “Advert A”, “Advert B” and “Next Page”  

2. Add the access code “GENDER” to our gender question. 

 

3. Set the advertisement pages to random and give them both a block code of “ADVERTS”. We

are doing this so we can get to them in the script through their block code.  

4. Create a Randomization script.  

Web Survey Creator will provide all the data you need on a page for scripted changing of
page orders as long as two things are true - at least one page is randomized in the survey
AND a test randomization parameter script exists on the page. If either these things is

false, no ordering is possible.

Scripting Reference 57

OK, everything is set up on our survey to allow us to manage the ordering of the pages. Let’s go through
the script we need to create.

The first thing we will need to do in the script is get to the value of the gender question:

We now know whether the respondent is male or not. The next step is to get the page items in an array
for the survey and work out where the advertisement pages are in this array.

We want to... Key script Fragment...

Get the pages for the survey wscScripting.getPageRandomizationItems

Through this script, we have determined the position in the pages array that contains the first of our
advertisements. We know that the page after this page will be the second advertisement.

All that is left to do is make sure the advertisements are in the correct order. The full code for the script
(including the ordering) is shown below:

This example shows a clever use of Block Codes on pages. The two pages we want to swap
around have been given the same block code:

ADVERTS

This means in our script we can just work through pages and look for the block code
“ADVERTS”. As soon as we find a page with this block code, we know we have found the first of
our two advertisement pages. If we didn’t use the block code, we’d have to check for both of our pages
by name as we moved through the array of pages, because we wouldn’t know which page was
shown first.

58 Scripting Reference

Note how we save down the page items at the end of the script once they are ordered in the way we want.

We want to... Key script Fragment...

Save the pages in order
back to the survey

wscScripting.setPageRandomizationItems

Scripting Reference 59

Page Ordering in a Nutshell

As can be seen from the previous example, a page ordering script has 3 distinct parts to it:

Step 1: Get the current page order

The script gets the current page objects into an array using getPageRandomizationItems.

Step 2: Alter the Page Order in the array from step 1

This is the heart of the script - you do whatever is needed to move pages around in the array. As we can
see from the previous example, getting page objects from the array is easy:

As is putting them back into the array:

Step 3: Update the Page Ordering from the Array

Once you have finished manipulating the array, it can be used to update the page ordering for the survey.

60 Scripting Reference

Ordering Choices

Choice questions are one of the simplest, and most used question types in Web Survey Creator. An
example of a choice question is shown below:

Standard Ordering of Choices

The vast majority of choice questions are ordered the same way as they appear in the content manager. It
is also possible to choose other ordering options when adding or editing a choice question as follows:

Here is what our example question might look like, if we chose to randomize the order of choices:

While alphabetical sorting and randomization can be very useful, sometimes you want to set up an exact
order of choices. This is when scripting needs to be used to manage choices.

Setting up for Scripted Choice Ordering

All question types that have choices can have the ordering of those choice managed through scripting.
For a question to be available in scripting, the following setup must be done:

1. An access code must set up on the question so that the question can be referred to in

script. 
2. The choices must be randomized by selecting one of the two randomization choices on the

question.

Scripting Reference 61

 

3. Question must be made available for scripting - if this is not ticked, the system will not put
the appropriate data into the page for choice ordering to be modifiable.

Example: Scripted Choice Ordering

There are any number of reasons you may want to reorder choices. For the purposes of demonstration,
we are going to use a contrived, but straight-forward example - we will take a randomized set of choices,
and in script sort them alphabetically.

Choice Questions

Let’s start with a question that is randomized and has the following values:

To script this question so that the values are alphabetical, we first need to set the question up so it can be
used with scripting:

1. Set Access Code on the question so it can be accessed through scripting 

62 Scripting Reference

2. Use randomization for the question choices 

3. Make the question accessible to scripting 

We then need to write a script that does the re-ordering of the choices. The script needs to be set up as a

test of randomization parameters (similar to the scripts that are used for page ordering): 

The script to change the order of choice items in a question must be created on a page prior to the page
containing the actual question. Trying to change the ordering on the same page as the question will not
work - the script would be run too late.

The first thing we would need to do in our script is load the details for our question:

We want to... Key script Fragment...

Get the choices for a
question

wscScripting.getChoiceRandomizationItems

For the purposes of our demonstration, we are going to go through the choice objects, and set up the sort
order so that the choices are in alphabetical order.

We achieve this by updating “sortorder” with the actual text of each of the choices, and then re-sorting
the array.

Scripting Reference 63

Once we have re-sorted our array, we can save it back to the survey.

We want to... Key script Fragment...

Save the choices for a question
back to the survey

wscScripting.setChoiceRandomizationItems

64 Scripting Reference

Once this script is run, the choices in the question will appear in alphabetical order as shown here:

Scripting Reference 65

Single Range Matrix

Let’s now consider another “choice” question - a single range matrix. For this example, let’s use a matrix
that looks as follows:

Setting up this question so that we can manipulate choice order (i.e. column order) is exactly like a
standard choice question. We need to perform the same setup:

1. Set Access Code on the question so it can be accessed through scripting. In this case we will
give the question a code of “MATRIXSINGLE”

2. Use randomization for the question choices

3. Make the question accessible to scripting

The script will exactly match the script for the simple choice question, with one simple change - the code
to access the question:

Accessing and modifying the choices in questions work in a similar way, as can be seen
by the scripts used for single choice questions, and single range matrixes - they are

essentially identical. This is also true for other questions that
have choices - such as ranking questions.

The full script for sorting the matrix rows into alphabetical order is shown here:

66 Scripting Reference

The columns will appear in alphabetical order:

Choices are the same for all question types - but matrix questions also have rows. Managing rows is
similar to choices - you just need to use the right functions that relate to rows...

We want to... Key script Fragment...

Get the rows for a
question

wscScripting.getRowRandomizationItems

Save the rows for a
question back to the
survey

wscScripting.setRowRandomizationItems

Scripting Reference 67

This is the script we use to sort rows:

The question will then look as follows - with both rows and coumns in alphabetical order:

68 Scripting Reference

Dual Range Matrix

We have already seen how choices can be retrieved and saved for a single range matrix. We get the
choices as follows:

And to save choices we do the following:

So how do we get to the second matrix in a dual range matrix?

The answer to this can be seen in the two lines above. If you are dealing with any question type except a
dual range matrix, the “range” that will be dealt with is the first matrix - designated by a zero (0) in the
function call:

For a dual range matrix, if we want to load and save the choices from the second matrix, we enter one (1)
in the function call:

Scripting Reference 69

Scripting
Reference

Web Survey Creator provides specific objects and methods for
use in scripting.

This chapter is a reference guide for these objects and methods.

70 Scripting Reference

Scripting Objects

When a custom JavaScript is executed you will have access to two objects. These objects allow you access
to the questions that are exposed on the current page and additional help methods that can help you to
perform various tasks.

args

wscScripting

args

args contains a single item isValid that can be used to set the status of an event. This is particularly
relevant for confirming to the event engine that you wish to continue the current process. For example,
you must set the value to true on Next or Previous Button events or those processes halted and will not
continue.

Property: isValid
Return Value: boolean - Is the current process Valid
Example: var isOkay = true;

if (isOkay) {

 // All my changes allow me to continue 
 args.isValid = true;

}

wscScripting

The following methods available in the wscScripting object. Some methods contain a method and an
identical method post-fixed with the number 2. These methods are used where the question has two (2)
choice ranges.

For example, Dual Range Matrix questions consist of a Primary Range and a Secondary Range.

In these circumstances the Secondary Range can be utilized by using the methods with a post-fix of 2.
For example. getChoiceByValue2(question, value). In this document methods post-fixed with a number
of 2 will be documented only in their primary method. Each method explanation will denote if the
method has a second range capability.

A listing of the methods available for the wscScripting object are shown below. Detailed explanations are
provided in the next section.

Scripting Reference 71

Alphabetic List of wscScripting Methods

A
B
C

clearValidation(question)

D

derankChoice(question, choice)

deselectChoice(question, choice)

deselectChoice2(question, choice)

deselectChoiceByValue(question, value)

deselectChoiceByValue2(question, value)

deselectMatrixChoice(question, choice, row)

disableQuestion(question)

E

enableQuestion(question)

F

findObjectByKey(array, key, value)

findOrdinalByKey(array, key, value)

G

getABTesting()

getAgeFromDate(date)

getBrowserData()

getChoiceByCode(question, value)

getChoiceByCode2(question, value)

getChoiceByIdentity(question, identity)

getChoiceByIdentity2(question, identity)

getChoiceByTagValue(question, tagName, value)

72 Scripting Reference

getChoiceByTagValue2(question, tagName, value)

getChoiceByValue(question, value)

getChoiceByValue2(question, value)

getChoiceCommentByChoice(question, choice)

getChoiceRandomizationItems(question, matrixnumber)

getDateFromDateString(datestring)

getDateStringFromDate(date)

getDirection()

getDisplayType()

getDistribution()

getElementById(id)

getEventData(name)

getFileBarcodeData(question)

getFirstSelectedChoice(question)

getFirstSelectedChoice2(question)

getFirstSelectedChoiceValue(question)

getFirstSelectedChoiceValue2(question)

getFirstSelectedMatrixChoice(question, row)

getFirstSelectedMatrixChoice2(question, row)

getFirstSelectedMatrixChoiceValue(question, row)

getFirstSelectedMatrixChoiceValue2(question, row)

getLanguageId()

getMatrixChoiceCommentByRow(question, choice, row)

getMatrixChoiceNumericTotal(question, choice)

getMatrixNumericChoiceTotal(question, choice)

getMatrixNumericTotal(question)

getMatrixRowNumericTotal(question, row)

Scripting Reference 73

getMatrixValue(question, choice, row)
 ** Note: parameter order has changed from version 5.06.001

getMatrixValue(question, row, choice)

 ** Note: parameter order prior to version 5.06.001

 ** Note: order is reverse compatible

getOriginalDataStatus()

getPageRandomizationItems()

getQuestionByDataPipingCode(dataPipingCode)

getQuestionByIdentity(identity)

getQuestionRandomizationItems(pageId)

getQuotaByCode(code)

getQuotaByIdentity(identity)

getRecallCode()

getRowByCode(question, value)

getRowByTagValue(question, tagName, value)

getRowByValue(question, value)

getRowRandomizationItems(question)

getSelectedChoices(question)

getSelectedChoices2(question)

getSelectedMatrixChoices(question, row)

getSelectedMatrixChoices2(question, row)

getSelectedRanks(question)

getSubstringLeft(str, n)

getSubstringRight(str, n)

getTagValueByName(tagList, tagName)

getTrimString(str)

getUrlParameter(parameter)

getValidators(question)

74 Scripting Reference

getValue(question)

H

hideElement(element)

hideMatrixCell(question, choice, row)

hideMatrixCell2(question, choice, row)

hideQuestion(question)

I

isAnyChoiceSelected(question, choices)

isAnyChoiceSelected2(question, choices)

isAnyChoiceSelectedByValue(question, values)

isAnyChoiceSelectedByValue2(question, values)

isAnyMatrixChoiceSelected(question, choices, row)

isAnyMatrixChoiceSelected2(question, choices, row)

isAnyMatrixChoiceSelectedByValue(question, values, row)

isAnyMatrixChoiceSelectedByValue2(question, values, row)

isChoiceSelected(question, choice)

isChoiceSelected2(question, choice)

isChoiceSelectedByValue(question, value)

isChoiceSelectedByValue2(question, value)

isMatrixChoiceSelected(question, choice, row)

isMatrixChoiceSelected2(question, choice, row)

isMatrixChoiceSelectedByValue(question, value, row)

isMatrixChoiceSelectedByValue2(question, value, row)

isQuotaFull(quota)

J

K

L

M

N

Scripting Reference 75

numberToStringWithCommas(number)

O

P

Q

R

randomSelectChoice(question)

randomSelectChoice2(question)

randomSelectMultipleChoice(question, maxOptions)

randomSelectMultipleChoice(question, maxOptions2)

randomizeArray(array)

rankChoice(question, choice, rank)

resetMatrix(question, value)

resetMatrixRow(question, row, value)

resetQuestion(question)

S

selectChoice(question, choice)

selectChoice2(question, choice)

selectChoiceByValue(question, value)

selectChoiceByValue2(question, value)

selectMatrixChoice(question, choice, row)

selectMatrixChoice2(question, choice, row)

selectMatrixChoiceByValue(question, value, row)

selectMatrixChoiceByValue2(question, value, row)

setChoiceCommentByChoice(question, choice, comment)

setChoiceRandomizationItems(question, choices, matrixNumber)

setEventData(name, value)

setMatrixChoiceCommentByRow(question, choice, row, comment)

setMatrixValue(question, choice, row, value)

76 Scripting Reference

setPageRandomizationItems(pageItems)

setQuestionRandomizationItems(pageId, pageItems)

setRowRandomizationItems(question, rowItems)

setStarRatingonClick(question, clickEvent)

setValidation(question, text)

setValue(question, value)

showElement(element)

showMatrixCell(question, choice, row)

showMatrixCell2(question, choice, row)

showQuestion(question)

sortNumericArray(array, ascending)

sortQuotasByLeastFilled(quotas)

sortQuotasByMostFilled(quotas)

sortStringArray(array, ascending)

T

U

V

W

X

Y

Z

Scripting Reference 77

Function Reference

Method: clearValidation(question)

Parameters: question object - object of the question

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 wscScripting.clearValidation(question);

 }

Method: derankChoice(question, choice)

Parameters: question object - object of the question

 choice object - object of a choice

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 wscScripting.derankChoice(question, choice);

 }

 }

Method: deselectChoice(question, choice) second range

Parameters: question object - object of the question

 choice object - object of a choice

Return Value: boolean - confirmation that the choice was deselected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 var isUnselected = wscScripting.deselectChoice(question, choice);

 }

 }

Method: deselectChoiceByValue(question, number) second range

Parameters: question object - object of the question

 number - value of the question choice to check

Return Value: boolean - confirmation that the choice was deselected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var isUnselected = wscScripting.deselectChoiceByValue(question, 1);

 }

78 Scripting Reference

Method: deselectMatrixChoice(question, choice, row)

Parameters: question object - object of the question
 choice object - object of a choice
 row object - object of a row

Return Value: boolean - confirmation that the choice was deselected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');
 if (row) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {

 var isUnselected = wscScripting.deselectMatrixChoice(question,
choice, row);

 }
 }
 }

Method: disableQuestion(question)

Parameters: question object - object of the question

Return Value: boolean - confirmation that the choice was disabled

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var isDisabled = wscScripting.disabledQuestion(question);
 }

Method: enableQuestion(question)

Parameters: question object - object of the question

Return Value: boolean - confirmation that the choice was enabled

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var isDisabled = wscScripting.enabledQuestion(question);
 }

Method: findObjectByKey(array, key, value)

Parameters: array of objects
 string – key within objects in the array
 value – value of key within object to search

Return Value: object – object within the array

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {

 var oChoice = wscScripting.findObjectByKey(question.choices, 'text',
'Apple');

 }

Scripting Reference 79

Method: findOrdinalByKey(array, key, value)

Parameters: array of objects

 string – key within objects in the array

 value – value of key within object to search

Return Value: int – ordinal within the array

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var nOrd = wscScripting.findOrdinalByKey(question.choices, 'text',
'Apple');

 }

Method: getABTesting()

Parameters: Nil

Return Value: integer – Value (range 1..100) of for use by AB Testing

Example: var ABTest = wscScripting.getABTesting();

 if (ABTest <= 50) {

 // Split 50:50

 }

Method: getAgeFromDate()

Parameters: object - get the value from a date question, pass in the returned object

Return Value: integer or NaN

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var getValue = wscScripting.getValue(question);

var age = wscScripting.getAgeFromDate(getValue);

 }

Method: getBrowserData()

Parameters: Nil

Return Value: object - Browser Object

 o.browser = Browser Name

 o.version = Browser Version

 o.OS = Operating System

Example: var browser = wscScripting.getBrowserData();

 if (browser.OS == 'Windows') {

 // The respondent is on a Windows computer

 }

80 Scripting Reference

Method: getChoiceByCode(question, value) second range

Parameters: question object - object of the question
 string - value of the tag

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByCode(question, 'TOYOTA');
 if (choice) {
 // I can do something with this choice
 }
 }

Method: getChoiceByIdentity(question, identity) second range

Parameters: question object - object of the question
 string - identity of the choice to search for

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByIdentity(question, sId);
 if (choice) {
 // I can do something with this choice
 }
 }

Method: getChoiceByTagValue(question, tagName, value) second range

Parameters: question object - object of the question
 string - name of the tag to search for
 string - value of the tag being searched

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {

 var choice = wscScripting.getChoiceByTagValue(question, 'position',
'Manager');

 if (choice) {
 // I can do something with this choice
 }
 }

Method: getChoiceByValue(question, value) second range

Parameters: question object - object of the question
 number - value of the question choice to retrieve

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {
 // I can do something with this choice
 }
 }

Scripting Reference 81

Method: getChoiceCommentByChoice(question, choice)

Parameters: question object - object of the question

 choice object - object of the choice

Return Value: string or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 // I can do something with this choice

 }

 }

Method: getChoiceRandomizationItems(question, matrixnumber)

Parameters: question object - object of the question

Return Value: Array = Array of randomization data

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var aItems = wscScripting.getChoiceRandomizationItems(question, 0);

 }

Method: getDateFromDateString(dateString)

Parameters:
string = Value of string type to be converted to a date in format usable
by WSC

Return Value: date = Newly created date type

Example: var = stringDate = '2012.01.31.16.24';

 var newDate = wscScripting.getDateFromDateString(stringDate);

Method: getDateStringFromDate(date)

Parameters:
Date = Value of Date type to be converted to a string in format usable by
WSC

Return Value: string = Newly created string in format of YYYY.MM.DD.HH.mm

Example: var newDate = new Date();

 var newString = wscScripting.getDateStringFromDate(newDate);

 // newString contains today's date

 // e.g. 2012.01.31.16.24

82 Scripting Reference

Method: getDirection()

Parameters: Nil

Return Value: string containing:-

 ltr = Left to Right

 rtl = Right to Left e.g. Arabic

Example: var direction = wscScripting.getLanguageId();

 if (direction == 'rtl') {

 // This is a survey using a RTL language

 }

Method: getDisplayType()

Parameters: Nil

Return Value: string containing:-

 standard = Standard Display

 tablet = Tablet Computer e.g. iPad

 mobile = Mobile Phone / Cellular Phone e.g. iPhone

Example: var display = wscScripting.getDisplayType();

 if (display == 'tablet') {

 // This is a tablet based display

 }

Method: getDistribution()

Parameters: Nil

Return Value: object or undefined

Example: var object = wscScripting.getDistribution();

 if (object) {

 // I can do something with this object

 }

Method: getElementById(id)

Parameters: string - Identity of an Html Element

Return Value: object or undefined

Example: var object = wscScripting.getElementById('mycontrol');

 if (object) {

 // I can do something with this element

 }

Scripting Reference 83

Method: getEventData(name)

Parameters:
string - Identity of an item of data temporarily stored for later use on
the current page only

Return Value: value or undefined

Example: var object = wscScripting.getEventData('myvalue');

 if (object) {

 // I can do something with this value

 // Value contains the text 'Hello World!'

 }

Method: getFileBarcodeData(question)

Parameters: question object - object of the question

Return Value: string = JSON package

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var barcode = wscScripting.getFileBarcodeData(question);

 JSON.parse(barcode)

 }

Method: getFirstSelectedChoice(question) second range

Parameters: question object - object of the question

Return Value: choice object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var oChoice = wscScripting.getFirstSelectedChoice(question);

 }

Method: getFirstSelectedChoiceValue(question) second range

Parameters: question object - object of the question

Return Value: integer value or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var nValue = wscScripting.getFirstSelectedChoiceValue(question);

 }

84 Scripting Reference

Method: getFirstSelectedMatrixChoice(question) second range

Parameters: question object - object of the question

Return Value: choice object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var oChoice = wscScripting.getFirstSelectedMatrixChoice(question);

 }

Method: getFirstSelectedMatrixChoiceValue(question) second range

Parameters: question object - object of the question

Return Value: integer value or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var nValue = wscScripting.getFirstSelectedMatrixChoiceValue(question);

 }

Method: getLanguageId()

Parameters: Nil

Return Value: string - Two Character Language Code

Example: var language = wscScripting.getLanguageId();

 if (language == 'fr') {

 // This is a survey using French Language

 }

Method: getMatrixChoiceCommentByRow(question, choice, row)

Parameters: question object - object of the question

 choice object - object of a choice

 row object - object of a row

Return Value: string – comments or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 var comments = wscScripting.getMatrixChoiceCommentByRow(question,
choice, row);

 }

 }

 }

Scripting Reference 85

Method: getMatrixChoiceNumericTotal(question, choice)

Parameters: question object - object of the question
 choice object - object of a choice
 row object - object of a row

Return Value: int – total or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');
 if (row) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {

 var number = wscScripting.getMatrixChoiceCommentsByRow(question,
choice);

 }
 }
 }

Method: getMatrixNumericTotal(question)

Parameters: question object - object of the question

Return Value: int – total or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var total = wscScripting.getMatrixNumericTotal(question);
 }

Method: getMatrixRowNumericTotal(question, row)

Parameters: question object - object of the question

 row object - object of a row

Return Value: int – total or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'ROW1', 'ALPHA');
 var total = wscScripting.getMatrixRowNumericTotal(question, row);

 }

Method: getMatrixValue(question, choice, row)

Parameters: question object - object of the question
 choice object - object of a choice
 row object - object of a row

Return Value: int – total or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');
 if (row) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {
 var sValue = wscScripting. getMatrixValue (question, choice, row);
 }
 }
 }

86 Scripting Reference

Method: getOriginalDataStatus()

Parameters: Nil

Return Value: String – Unstarted, Draft, Completed

Example: var status = wscScripting.getOriginalDataStatus();

 if (status == 'Unstarted') {

 // I can do something because of this status

 }

Method: getPageRandomizationItems()

Parameters: Nil

Return Value: array or undefined – Array of PageRandomisation Objects

Example: var aItems = wscScripting.getPageRandomizationItems();

Method: getQuestionByDataPipingCode('CODE')

Parameters: string - Data Piping Code of a Question - Must be a WSC Data Piping Code.

If the question is not on the current page then you should use a Data
Piping

 ShortCut to include the question on the current page

Return Value: object or undefined

Example: // Using a data piping code

 var object = wscScripting.getQuestionByDataPipingCode('CODE');

 if (object) {

 // I can do something with this question

 }

 // Using a data piping symbol if the Question is not on the same page

 // The data piping symbol with the code #data# is required to

 // tell the system to have the question available

 var object2 = wscScripting.getQuestionByDataPipingCode('[@CODE#data#@]');

 if (object2) {

 // I can do something with this question

 }

Method: getQuestionByIdentity(identity)

Parameters: string - Identity of a Question - Must be a WSC internal identity

Return Value: object or undefined

Example:
var object = wscScripting.getQuestionByIdentity('61ce3764-1288-e111-8eae-
0019b9c4ecf3');

 if (object) {

 // I can do something with this question

 }

Scripting Reference 87

Method: getQuestionRandomizationItems(pageId)

Parameters: Nil

Return Value: array or undefined – Array of QuestionRandomisation Objects

Example: var aItems = wscScripting.getPageRandomizationItems();

 var sPageId = aItems[10];

Method: getQuotaByCode(code)

Parameters: string – Code of the Quota

Return Value: quota object – object of the quota

Example: var oQuota = wscScripting.getQuotaByCode('GENDER');

Method: getQuotaByIdentity(identity)

Parameters: string - Identity of a Quota - Must be a WSC internal identity

Return Value: quota object – object of the quota

Example:
var object = wscScripting.getQuotaByIdentity(‘61ce3764-1288-e111-8eae-
0019b9c4ecf3);

 if (object) {

 // I can do something with this quota

 }

Method: getRecallCode()

Parameters: Nil

Return Value: string - Unique Code which identifies the response

Example: var recallCode = wscScripting.getRecallCode();

Method: getRowByCode(question, value)

Parameters:
string - each question row must use the tag format: CODE:Somevalue for
this method to work

Return Value: object – object of the row

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByCode(question, "ALPHA");

 }

88 Scripting Reference

Method: getRowByTagValue(question, tagName, value)

Parameters: question object - object of the question

 string - name of the tag to search for

 string - value of the tag being searched

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 // I can do something with this row

 }

 }

Method: getRowByValue(question, value)

Parameters: int - rows must have the tag format of Value:somenumber

Return Value: object – object of the row

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByValue(question, 1);

 }

Method: getRowRandomizationItems(question)

Parameters: question object - object of the question

Return Value: array or undefined – Array of RowRandomisation Objects

Example: Array = Array of randomization data

 var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var aItems = wscScripting.getRowRandomizationItems(question);

 }

Method: getSelectedChoices(question) second range

Parameters: question object - object of the question

Return Value: array or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var selectedChoices = wscScripting.getSelectedChoices(question);

 if (selectedChoices) {

 // I can do something with this array

 }

 }

Scripting Reference 89

Method: getSelectedMatrixChoices(question, row) second range

Parameters: question object - object of the question

 row object - object of a row

Return Value: array or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 var selectedChoices = wscScripting.getSelectedMatrixChoices(question,
row);

 if (selectedChoices) {

 // I can do something with this array

 }

 }

 }

Method: getSelectedRanks(question)

Parameters: question object - object of the question

Return Value: array or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var ranks = wscScripting. getSelectedRanks(question);

 }

Method: getSubstringLeft(string, number)

Parameters: string = Base string from which a new string will be extracted

 number = Number of Characters from the Left side of the string to be
extracted

Return Value: string = Newly extracted string

Example: var newString = wscScripting.getSubstringLeft('Hello World!', 5);

 // newString contains 'Hello'

Method: getSubstringRight(string, number)

Parameters: string = Base string from which a new string will be extracted

 number = Number of Characters from the Right side of the string to be
extracted

Return Value: string = Newly extracted string

Example: var newString = wscScripting.getSubstringRight('Hello World!', 5);

 // newString contains 'orld!'

90 Scripting Reference

Method: getTagValueByName(tagList, tagName)

Parameters: Array = Array of tags

 string = string of the name of the tag

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = question,rows[0];

 if (row) {

 var tag = wscScripting.getTagValue(row, 'BANKCODE');

 }

 }

Method: getTrimString(string)

Parameters:
string = Base string from which a new string will be created with spaces
at either end of the string removed

Return Value: string = Newly created string

Example: var newString = wscScripting.getTrimString(' Hello World! ');

 // newString contains 'Hello World!'

Method: getUrlParameter(string)

Parameters: string = parameter from URL

Return Value: string = URL parameter value

Example: var language = wscScripting.getUrlParameter('lang');

 // return value "en"

Method: getValidators(question)

Parameters: question object - object of the question

Return Value: array

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var validators = wscScripting.getValidators(question);

 if (validators) {

 // I can do something with this array of validators

 }

 }

Scripting Reference 91

Method: getValue(question)

Parameters: question object - object of the question

Return Value: value or undefined dependent on the question type

 value only suitable for SingleText, MultipleText, DemographicEmail,
DemographicPhone, Number, Slider and DateTime Questions

Example: Var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var value = wscScripting.getValue(question);

 }

Method: hideElement(element)

Parameters: string = id of an Html control to hide

Return Value: boolean - confirmation that the control was hidden

Example: wscScripting.hideElement('mydiv');

Method: hideMatrixCell(question, choice, row) second range

Parameters: question object - object of the question

 row object - object of a row

 choice object - object of a choice

Return Value: Nil

Example:

Method: hideQuestion(question)

Parameters: question object - object of the question

Return Value: nil

Example: Var question = wscScripting.getQuestionByDataPipingCode('CODE');

 wscScripting.hideQuestion(question);

92 Scripting Reference

Method: isAnyChoiceSelected(question, choices) second range

Parameters: question object - object of the question

 choices object - array of choice objects to check

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question && question.choices) {

 var isSelected = wscScripting.isAnyChoiceSelected(question,
question.choices);

 }

Method: isAnyChoiceSelectedByValue(question, values) second range

Parameters: question object - object of the question

 array - array of number values to check

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question && question.choices) {

 // Make an array of values

 var arrayChoices = new Array(1, 2, 3);

 var isSelected = wscScripting.isAnyChoiceSelectedByValue(question,
arrayChoices);

 }

Method: isAnyMatrixChoiceSelected(question, choices, row) second range

Parameters: question object - object of the question

 array - array of choice objects to check

 row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question && question.choices) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 // Make an array of just 1 choice

 var arrayChoices = new Array();

 arrayChoices.push(question.choices[0]);

 var isSelected = wscScripting.isAnyMatrixChoiceSelected(question,
arrayChoices, row);

 }

 }

Scripting Reference 93

Method: isAnyMatrixChoiceSelectedByValue(question, values, row) second range

Parameters: question object - object of the question

 array - array of number values to check

 row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question && question.choices) {

 var row = wscScripting.getRowByTagValue(question, BANKCODE, 'AMER');

 if (row) {

 // Make an array of values

 var arrayChoices = new Array(1, 2, 3);

 var isSelected =
wscScripting.isAnyMatrixChoiceSelectedByValue(question,arrayChoices, row);

 }

 }

Method: isChoiceSelected(question, choice) second range

Parameters: question object - object of the question
 choice object - object of a choice

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {

 var isSelected = wscScripting.isChoiceSelected(question,
choice);

 }
 }

Method: isChoiceSelectedByValue(question, value) second range

Parameters: question object - object of the question

 number - value of the question choice to check

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var isSelected = wscScripting.isChoiceSelectedByValue(question, 1);

 }

94 Scripting Reference

Method: isMatrixChoiceSelected(question, choice, row) second range

Parameters: question object - object of the question

 choice object - object of a choice

 row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 var isSelected = wscScripting.isMatrixChoiceSelected(question,
choice, row);

 }

 }

 }

Method: isMatrixChoiceSelectedByValue(question, value, row) second range

Parameters: question object - object of the question

 number - value of the question choice to check

 row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 var isSelected = wscScripting.isMatrixChoiceSelectedByValue(question, 1,
row);

 }

 }

Method: isQuotaFull(quota)

Parameters: quota object - object of the quota

Return Value: boolean - confirmation that the quota is full

Example: var quota = wscScripting.getQuotaByCode('QUOTACODE');

 if (quota) {

 var isFull = wscScripting.isQuotaFull(quota);

 }

Scripting Reference 95

Method: numberToStringWithCommas(number)

Parameters: integer - number to be converted to string with commas

Return Value: string or undefined

Example: var number = 100000000;

 var numberString = wscScripting.numberToStringWithCommas(number);

Method: randomSelectChoice(question) second range

Parameters: question object - object of the question

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.randomSelectChoice(question);

 }

Method: randomSelectMultipleChoice(question, maxCount) second range

Parameters: question object - object of the question

 int – number of choices to select

Return Value: object or undefined

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.randomSelectMultipleChoice(question, 3);

 }

Method: randomizeArray(array)

Parameters: array – array of single dimension values, like strings or numbers

Return Value: array of randomly sorted values

Example: var array = wscScripting.randomizeArray(['One', 'Two', 'Three']);

Method: rankChoice(question, choice, rank)

Parameters: question object - object of the question

 choice object - object of the choice

 int – postion to rank

Return Value: none

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (choice) {

 wscScripting.rankChoice(question, choice, 1);

 }

 }

96 Scripting Reference

Method: resetMatrix(question, value)

Parameters: question object - object of the question
 value – value to place in each cell

Return Value: none

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {
 wscScripting.resetMatrix(question, 'Hello');
 }
 }

Method: resetMatrixRow(question, row, value)

Parameters: question object - object of the question
 row object - object of the row
 value – value to place in each cell

Return Value: none

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');
 if (row && choice) {
 wscScripting.resetMatrixRow(question, row,'Hello');
 }
 }

Method: resetQuestion(question)

Parameters: question object - object of the question

Return Value: none

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 wscScripting.resetQuestion(question);
 }

Method: selectChoice(question, choice) second range

Parameters: question object - object of the question
 choice object - object of a choice

Return Value: boolean - confirmation that the choice was selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (choice) {
 var isSelected = wscScripting.selectChoice(question, choice);
 }
 }

Scripting Reference 97

Method: selectChoiceByValue(question, number) second range

Parameters: question object - object of the question

 number - value of the question choice to check

Return Value: boolean - confirmation that the choice was selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var isSelected = wscScripting.selectChoiceByValue(question, 1);

 }

Method: selectMatrixChoice(question, choice, row) second range

Parameters: question object - object of the question

 choice object - object of a choice

 row object - object of a row

Return Value: boolean - confirmation that the choice was selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (row && choice) {

 var isSelected = wscScripting.selectMatrixChoice(question, choice,
row);

 }

 }

Method: selectMatrixChoiceByValue(question, value, row) second range

Parameters: question object - object of the question

 value - value of a choice

 row object - object of a row

Return Value: boolean - confirmation that the choice was selected

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 if (row) {

 var isSelected = wscScripting.selectMatrixChoiceByValue(question, 1,
row);

 }

 }

98 Scripting Reference

Method: setChoiceCommentByChoice(question, choice, comment)

Parameters: question object - object of the question
 choice object - object of a choice
 string or int - string or number comment

Return Value: nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var choice = question.choices[0];
 if (choice) {

 wscScripting.setChoiceCommentByChoice(question, choice, "Hello
World");

 }
 }

Method: setChoiceRandomizationItems(question, choices, matrixNumber)

Parameters: question object - object of the question
 choice object array - array of choice objects
 int - matrix number

Return Value: boolean

Example: bSuccess = wscScripting.setChoiceRandomizationItems(question, aRandom, 0);

Method: setEventData(name, value)

Parameters:
string - Identity of an item of data temporarily stored for later use on
the current page only

 object - Value of an item of data temporarily stored for later use on the
current page only

Return Value: boolean - confirmation that the value was correctly added

Example: wscScripting.setEventData('myvalue', 'Hello World!');

Method: setMatrixChoiceCommentByRow(question, choice, row, comment)

Parameters: question object - object of the question
 choice object - object of the choice
 row object - object of a row
 string - value of a comment

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');
 var choice = wscScripting.getChoiceByValue(question, 1);
 if (row && choice) {

 var isSelected = wscScripting.setMatrixChoiceCommentByRow(question,
choice, row, 'A comment');

 }
 }

Scripting Reference 99

Method: setMatrixValue(question, choice, row, value)

Parameters: question object - object of the question

 choice object - object of the choice

 row object - object of a row

 int or string - value for the matrix

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 var row = wscScripting.getRowByTagValue(question, 'BANKCODE', 'AMER');

 var choice = wscScripting.getChoiceByValue(question, 1);

 if (row && choice) {

 var isSelected = wscScripting.setMatrixValue(question, choice, row, 'A
comment');

 }

 }

Method: setPageRandomizationItems(pageItems)

Parameters: array of page randomization items

Return Value: bool Success

Example: var aItems = wscScripting.getPageRandomizationItems();

 // Make page 4 and page 6 swap the order

 var oPage1 = aItems[3];

 var oPage2 = aItems[5];

 aItems[3] = oPage2;

 aItems[5] = oPage1;

 wscScripting.setPageRandomizationItems(aItems);

Method: setQuestionRandomizationItems(pageId, pageItems)

Parameters: page id – string id of the page

 array of page randomization items

Return Value: Nil

Method: setRowRandomizationItems(question, rowItems)

Parameters: question – object of the question

 array of row randomization items

Return Value: Nil

100 Scripting Reference

Method: setStarRatingonClick(question, clickEvent)

Parameters: question – object of the question

 click event to be executed

Return Value: Nil

Example:
wscScripting.setStarRatingonClick(oQuestion, function() {
StarRating_Stars() });

Method: setValidation(question, text)

Parameters: question object - object of the question

 string - text of the validation message

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 wscScripting.setValidation(question, 'Something doesnt make sense!');

 }

Method: setValue(question, value)

Parameters: question object - object of the question

 value - type dependent on question type

 value only suitable for SingleText, MultipleText, DemographicEmail,
DemographicPhone, Number, Slider and DateTime Questions

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');

 if (question) {

 wscScripting.setValue(question, 'Hello World!');

 }

Method: showElement(string)

Parameters: string = id of an Html control to show

Return Value: boolean - confirmation that the control was shown

Example: wscScripting.showElement('mydiv');

Scripting Reference 101

Method: showMatrixCell(question, choice, row) second range

Parameters: question object - object of the question
 choice object - object of a choice
 row object - object of a row

Return Value: Nil

Method: showQuestion(question)

Parameters: question object - object of the question

Return Value: Nil

Example: var question = wscScripting.getQuestionByDataPipingCode('CODE');
 if (question) {
 wscScripting.showQuestion(question);
 }

Method: sortNumericArray(array, ascending)

Parameters: array – array of single dimension numbers
 bool – true for ascending

Return Value: array of sorted values

Example: var array = wscScripting.randomizeArray([18, 2, 3], true);
 // Will return [2, 3, 18]

Method: sortQuotasByLeastFilled(array)

Parameters: array – array of quota objects

Return Value: array of sorted quota objects

Example: var quota1 = wscScripting.getQuotaByCode('quotacode');
 var quota2 = wscScripting.getQuotaByCode('quotacode');

 var quotas = [];

 quotas.push(quota1, quota2);

 var leastFilled = wscScripting.sortQuotasByLeastFilled(quotas);

Method: sortQuotasByMostFilled(array)

Parameters: array – array of quota objects

Return Value: array of sorted quota objects

Example: var quota1 = wscScripting.getQuotaByCode('quotacode');
 var quota2 = wscScripting.getQuotaByCode('quotacode');

 var quotas = [];

 quotas.push(quota1, quota2);

 var mostFilled = wscScripting.sortQuotasByMostFilled(quotas);

102 Scripting Reference

Method: sortStringArray(array, ascending)

Parameters: array – array of single dimension strings

 bool – true for ascending

Return Value: array of sorted values

Example: var array = wscScripting.sortStringArray(['One', 'Two', 'Three'], false);

 // Will return [‘Two’, ‘Three’, ‘One’]

Scripting Reference 103

Additional Objects

The following objects exist and have the properties as described with type and name.

Note: You do not have the ability to affect the rendering of a standard question by altering a property.

SurveyQuestion

string addressType

string allRankedText

array [surveychoice] choices

array [surveychoice] choices2

string clearText

string containerName

string dataPipingCode

number defaultValue

string fieldWidth1

string fieldWidth2

string formatType

string gridHeadingFormat

number gridTotal

string identity

number increment

number interval

boolean isCommentsEnabledByDefault

boolean isHeadingTextVertical

boolean isLargeComments

boolean isLength

boolean isMandatory

boolean isPivot

104 Scripting Reference

boolean isQuestionOnPage

boolean isResetAllowed

boolean isSpecify

string javascriptBodyName

string listDirection

string listType

number maxIncrement

number maxValue

number minValue

string noneRankedText

number numberGrids

string popupType

string primaryRangeTitle

string questionNumber

string rankedText

number repeatRows

string resetText

string rowHeight1

string rowHeight2

array [surveyrow] rows

number scaleIncrement

string secondaryRangeTitle

array [surveyquestiontag] tags

string text

string textPosition

string type

Scripting Reference 105

string unRankedText

SurveyChoice

number grid

string identity

string imageHeight

string imageToolTip

string imageUrl

string imageWidth

boolean isComments

boolean isDefault

boolean isExclusive

boolean isPegged

string labelText

string numberPostText

string numberPreText

array [surveychoicetag] tags

string text

number value

SurveyChoiceTag

string identity

string name

string text

SurveyRow

string identity

string imageHeight

106 Scripting Reference

string imageToolTip

string imageUrl

string imageWidth

array [surveyrowtag] tags

string text

SurveyHierarchicalListItem

string identity

string description

string parent Identity

SurveyRowTag

string identity

string name

string text

SurveyQuota

string code

string identity

bool isPriority

int numberLimit

int numberAllowed

int numberResponded

int numberOverflow

string title

SurveyDistribution

string identity

array [surveydistributiontag] tags

Scripting Reference 107

string title

SurveyDistributionTag

string identity

string name

string text

Browser

string browser

string OS

string version

PageRandomisation

string blockCode

string identity

bool isRandom

string sortOrder

string title

